The Parity Conjecture for hyperelliptic curves

Holly Green

University College London

June 3rd, 2021

Want to be able to prove the Parity Conjecture for hyperelliptic curves over \mathbb{Q} given by $y^2 = f(x)g(x)$.

Conjecture (The Parity Conjecture)

Let C/\mathbb{Q} be an algebraic curve. Then $(-1)^{\operatorname{rank}(\operatorname{Jac} C)} = w(\operatorname{Jac} C)$.

To do this, we need an understanding of the main ingredients, i.e:

- $w(\operatorname{Jac} C) = w_{\infty}(\operatorname{Jac} C) \prod_{p} w_{p}(\operatorname{Jac} C)$,
- rank(Jac C).

Disclaimer: we will assume #III is finite.

Extracting parity information from an isogeny

To understand the rank of $C_{fg} : y^2 = f(x)g(x)$, we will use an isogeny.

Theorem (G.)

 $\blacksquare \ \ \mathsf{Jac}\ C_f \times \mathsf{Jac}\ C_g \times \mathsf{Jac}\ C_{fg} \to \mathsf{Jac}\ B$

2 $BSD(Jac C_f)BSD(Jac C_g)BSD(Jac C_{fg}) = BSD(Jac B)$

 $\textbf{3} \operatorname{rank}(\operatorname{Jac} C_f) + \operatorname{rank}(\operatorname{Jac} C_g) + \operatorname{rank}(\operatorname{Jac} C_{fg}) \equiv \lambda_{\infty} + \sum_p \lambda_p \mod 2.$

Extracting parity information from an isogeny

Example

When $f(x) = x^2 + ax + b$ and g(x) = x then

$$C_{fg}: y^2 = x^3 + ax^2 + bx, \qquad B: y^2 = x^4 + ax^2 + bx$$

and
$$\operatorname{rank}(C_{\operatorname{fg}}) \equiv \lambda_{\infty} + \sum_{p} \lambda_{p} \mod 2$$
 where $\lambda_{\infty} = \operatorname{ord}_{2}\left(\frac{\Omega(C_{\operatorname{fg}})}{\Omega(\operatorname{Jac} B)}\right)$ and $\lambda_{p} = \operatorname{ord}_{2}\left(\frac{c_{p}(C_{\operatorname{fg}})}{c_{p}(\operatorname{Jac} B)}\right)$.

More generally,

$$\lambda_{\nu} = \operatorname{ord}_{2}\left(\frac{c_{\nu}(\operatorname{Jac} C_{f})c_{\nu}(\operatorname{Jac} C_{g})c_{\nu}(\operatorname{Jac} C_{fg})}{c_{\nu}(\operatorname{Jac} B)}\frac{\mathsf{d}_{\nu}(C_{f})\mathsf{d}_{\nu}(C_{g})\mathsf{d}_{\nu}(C_{fg})}{\mathsf{d}_{\nu}(B)}\right)$$

Question

How does this construction compare to BSD? BSD predicts

$$(-1)^{\operatorname{rank}(C_f)+\operatorname{rank}(C_g)+\operatorname{rank}(C_{fg})} = w_{\infty}(C_f)w_{\infty}(C_g)w_{\infty}(C_{fg})\prod_p w_p(C_f)w_p(C_g)w_p(C_{fg}).$$

Proving the Parity Conjecture

At a place v of \mathbb{Q} define a discrepancy factor $\mu_v = (-1)^{\lambda_v} w_v (\operatorname{Jac} C_f) w_v (\operatorname{Jac} C_g) w_v (\operatorname{Jac} C_{fg})$.

$$\prod_{\nu=\rho,\infty} \mu_{\nu} = (-1)^{\lambda_{\infty} + \sum \lambda_{\rho}} w(\operatorname{Jac} C_{f}) w(\operatorname{Jac} C_{g}) w(\operatorname{Jac} C_{fg})$$
$$= (-1)^{\operatorname{rank}(\operatorname{Jac} C_{f}) + \operatorname{rank}(\operatorname{Jac} C_{g}) + \operatorname{rank}(\operatorname{Jac} C_{fg})} w(\operatorname{Jac} C_{f}) w(\operatorname{Jac} C_{g}) w(\operatorname{Jac} C_{fg}).$$

If the Parity Conjecture holds for C_f and C_g , then

$$\prod_{\boldsymbol{\nu}=\boldsymbol{p},\infty}\mu_{\boldsymbol{\nu}}=(-1)^{\mathrm{rank}(\mathrm{Jac}\,C_{\mathrm{fg}})}w(\mathrm{Jac}\,C_{\mathrm{fg}}).$$

Let $(\cdot, \cdot)_{\nu}$ denote the Hilbert symbol. If $A, B \in \mathbb{Q}$, then $\prod_{\nu=p,\infty} (A, B)_{\nu} = +1$.

Aim

To express μ_v as a product of Hilbert symbols with entries in \mathbb{Q} . Then

PC for
$$C_f$$
 and $C_g \Rightarrow$ PC for C_{fg}

Holly Green (UCL)

Sturm's theorem

The *Sturm sequence* for $f(x) \in \mathbb{R}[x]$ is

 $P_0 = f(x),$ $P_1 = f'(x),$ $P_{i+1} \equiv -P_{i-1} \mod P_i.$

Let $\sigma(\alpha)$ be the number of sign changes in $P_0(\alpha)$, $P_1(\alpha)$, $P_2(\alpha)$, ...

Theorem (Sturm's theorem)

The number of \mathbb{R} roots of f(x) in the interval $(\alpha, \beta]$ is $\sigma(\alpha) - \sigma(\beta)$.

Example

Let
$$f(x) = x^2 + ax + b$$
. Then $P_0 = f$, $P_1 = 2x + a$, $P_2 = \frac{1}{4}(a^2 - 4b) = \frac{1}{4}\Delta_f$.

How many roots does $x^2 + 2x - 2$ have in the interval (0, 1]?

$$P_0(0), P_1(0), P_2(0) = -2, 2, 3;$$
 $P_0(1), P_1(1), P_2(1) = 1, 4, 3.$

So $\sigma(0) - \sigma(1) = 1 - 0 = 1$.

Proving the Parity Conjecture for a particular family

We will now fix g(x) = x and assume that f is monic.

$$\mu_{\infty} = egin{cases} -1 & \#\mathbb{R}_{<0} \ \textit{roots of } f \equiv \deg f + (1 \ \textit{or} \ 2) \mod 4, \ +1 & \textit{otherwise.} \end{cases}$$

Theorem (G., A. Morgan)

Let c_i , l_i be the constant and lead terms of P_i (the *i*th Sturm polynomial for f). Then

$$\mu_{\infty} = \prod_{i=0}^{\deg f - 1} (-c_i, c_{i+1})_{\infty} (l_i, -l_{i+1})_{\infty}.$$

Example

Theorem (G.)

Let $f(x) = x^2 + ax + b$. Then $\mu_{\infty} = (-b, a)(-2a, \Delta_f)$. This expression works for $v \neq \infty$ too.

Proving the Parity Conjecture for a particular family

Continuing to take g(x) = x and f monic.

Theorem (G., C. Maistret)

•

Let $f(x) = x^3 + ax^2 + bx + c$. Then

$$\mu_{\mathbf{v}} = (b, -c)_{\mathbf{v}} (ab - 9c, -b\Delta_f)_{\mathbf{v}} (-2, \Delta_f)_{\mathbf{v}}.$$

$$\mu_{\nu} = (-1)^{\lambda_{\nu}} w_{\nu} (\operatorname{Jac} C_{f}) w_{\nu} (\operatorname{Jac} C_{xf})$$
$$\Rightarrow (-1)^{\operatorname{rank}(\operatorname{Jac} C_{f}) + \operatorname{rank}(\operatorname{Jac} C_{xf})} w (\operatorname{Jac} C_{f}) w (\operatorname{Jac} C_{xf}) = +1$$

Corollary

1 PC holds for $C_f : y^2 = f(x)$ iff it holds for $C_{xf} : y^2 = xf(x)$.

2 If E₁, E₂ are elliptic curves with E₁[2] ≅ E₂[2], then PC holds for E₁ iff it holds for E₂.
3 PC holds for the genus 2 hyperelliptic curve B : y² = f(x²).

Continuing to take g(x) = x and f monic.

Conjecture (G.)

Let c_i , l_i be the constant and lead terms of P_i (the *i*th Sturm polynomial for f). Then

$$\mu_{v} = \prod_{i=0}^{\deg f - 1} (-c_{i}, c_{i+1})_{v} (l_{i}, -l_{i+1})_{v}.$$

Next step: understanding the Sturm polynomials over \mathbb{Q}_p .

Thank you for listening!