The Parity Conjecture for hyperelliptic curves

Holly Green

University College London

June 3rd, 2021

Want to be able to prove the Parity Conjecture for hyperelliptic curves over \mathbb{Q} given by $y^{2}=f(x) g(x)$.

Conjecture (The Parity Conjecture)

Let C / \mathbb{Q} be an algebraic curve. Then $(-1)^{\operatorname{rank}(\operatorname{Jac} C)}=w(\operatorname{Jac} C)$.

To do this, we need an understanding of the main ingredients, i.e:

- $w(\operatorname{Jac} C)=w_{\infty}(\operatorname{Jac} C) \prod_{p} w_{p}(\operatorname{Jac} C)$,
- rank(Jac C).

Disclaimer: we will assume \#Ш is finite.

Extracting parity information from an isogeny

To understand the rank of $C_{f g}: y^{2}=f(x) g(x)$, we will use an isogeny.

Theorem (G.)

$11 \mathrm{Jac} C_{f} \times \mathrm{Jac} C_{g} \times \mathrm{Jac} C_{f g} \rightarrow \mathrm{Jac} B$
$12 \operatorname{BSD}\left(\mathrm{Jac} C_{f}\right) \operatorname{BSD}\left(\mathrm{Jac} C_{g}\right) \operatorname{BSD}\left(\mathrm{Jac} C_{f g}\right)=\operatorname{BSD}(\mathrm{Jac} B)$
$3 \operatorname{rank}\left(\operatorname{Jac} C_{f}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{g}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{f g}\right) \equiv \lambda_{\infty}+\sum_{p} \lambda_{p} \bmod 2$.

Extracting parity information from an isogeny

Example

When $f(x)=x^{2}+a x+b$ and $g(x)=x$ then

$$
C_{f g}: y^{2}=x^{3}+a x^{2}+b x, \quad B: y^{2}=x^{4}+a x^{2}+b
$$

and $\operatorname{rank}\left(C_{f g}\right) \equiv \lambda_{\infty}+\sum_{p} \lambda_{p} \bmod 2$ where $\lambda_{\infty}=\operatorname{ord}_{2}\left(\frac{\Omega\left(c_{f g}\right)}{\Omega(\operatorname{Jac} B)}\right)$ and $\lambda_{p}=\operatorname{ord}_{2}\left(\frac{c_{p}\left(C_{f g}\right)}{c_{p}(\operatorname{Jac} B)}\right)$.
More generally,

$$
\lambda_{v}=\operatorname{ord}_{2}\left(\frac{c_{v}\left(\operatorname{Jac} C_{f}\right) c_{v}\left(\operatorname{Jac} C_{g}\right) c_{v}\left(\operatorname{Jac} C_{f g}\right)}{c_{v}(\operatorname{Jac} B)} \frac{\mathrm{d}_{v}\left(C_{f}\right) \mathrm{d}_{v}\left(C_{g}\right) \mathrm{d}_{v}\left(C_{f g}\right)}{\mathrm{d}_{v}(B)}\right) .
$$

Question

How does this construction compare to BSD? BSD predicts

$$
(-1)^{\operatorname{rank}\left(C_{f}\right)+\operatorname{rank}\left(C_{g}\right)+\operatorname{rank}\left(C_{f g}\right)}=w_{\infty}\left(C_{f}\right) w_{\infty}\left(C_{g}\right) w_{\infty}\left(C_{f g}\right) \prod_{p} w_{p}\left(C_{f}\right) w_{p}\left(C_{g}\right) w_{p}\left(C_{f g}\right) .
$$

Proving the Parity Conjecture

At a place v of \mathbb{Q} define a discrepancy factor $\mu_{v}=(-1)^{\lambda_{v}} w_{v}\left(\operatorname{Jac} C_{f}\right) w_{v}\left(\operatorname{Jac} C_{g}\right) w_{v}\left(\operatorname{Jac} C_{f g}\right)$.

$$
\begin{aligned}
\prod_{v=p, \infty} \mu_{v} & =(-1)^{\lambda_{\infty}+\sum \lambda_{\rho}} w\left(\operatorname{Jac} C_{f}\right) w\left(\operatorname{Jac} C_{g}\right) w\left(\operatorname{Jac} C_{f g}\right) \\
& =(-1)^{\operatorname{rank}\left(\operatorname{Jac} C_{f}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{g}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{f g}\right)} w\left(\operatorname{Jac} C_{f}\right) w\left(\operatorname{Jac} C_{g}\right) w\left(\operatorname{Jac} C_{f g}\right)
\end{aligned}
$$

If the Parity Conjecture holds for C_{f} and C_{g}, then

$$
\prod_{v=p, \infty} \mu_{v}=(-1)^{\operatorname{rank}\left(\operatorname{Jac} C_{f g}\right)} w\left(\operatorname{Jac} C_{f g}\right)
$$

Let $(\cdot, \cdot)_{v}$ denote the Hilbert symbol. If $A, B \in \mathbb{Q}$, then $\prod_{v=p, \infty}(A, B)_{v}=+1$.

Aim

To express μ_{v} as a product of Hilbert symbols with entries in \mathbb{Q}. Then

$$
\mathrm{PC} \text { for } C_{f} \text { and } C_{g} \Rightarrow \mathrm{PC} \text { for } C_{f g} .
$$

Sturm's theorem

The Sturm sequence for $f(x) \in \mathbb{R}[x]$ is

$$
P_{0}=f(x), \quad P_{1}=f^{\prime}(x), \quad P_{i+1} \equiv-P_{i-1} \quad \bmod P_{i}
$$

Let $\sigma(\alpha)$ be the number of sign changes in $P_{0}(\alpha), P_{1}(\alpha), P_{2}(\alpha), \ldots$

Theorem (Sturm's theorem)

The number of \mathbb{R} roots of $f(x)$ in the interval $(\alpha, \beta]$ is $\sigma(\alpha)-\sigma(\beta)$.

Example

Let $f(x)=x^{2}+a x+b$. Then $P_{0}=f, P_{1}=2 x+a, P_{2}=\frac{1}{4}\left(a^{2}-4 b\right)=\frac{1}{4} \Delta_{f}$.
How many roots does $x^{2}+2 x-2$ have in the interval $(0,1]$?

$$
P_{0}(0), P_{1}(0), P_{2}(0)=-2,2,3 ; \quad P_{0}(1), P_{1}(1), P_{2}(1)=1,4,3 .
$$

So $\sigma(0)-\sigma(1)=1-0=1$.

Proving the Parity Conjecture for a particular family

We will now fix $g(x)=x$ and assume that f is monic.

Theorem (G.)

$$
\mu_{\infty}= \begin{cases}-1 & \# \mathbb{R}_{<0} \text { roots of } f \equiv \operatorname{deg} f+(1 \text { or } 2) \bmod 4 \\ +1 & \text { otherwise }\end{cases}
$$

Theorem (G., A. Morgan)

Let c_{i}, l_{i} be the constant and lead terms of P_{i} (the ith Sturm polynomial for f). Then

$$
\mu_{\infty}=\prod_{i=0}^{\operatorname{deg} f-1}\left(-c_{i}, c_{i+1}\right)_{\infty}\left(\iota_{i},-l_{i+1}\right)_{\infty}
$$

Example

Let $f(x)=x^{2}+a x+b$. Then $\mu_{\infty}=(-b, a)\left(-2 a, \Delta_{f}\right)$. This expression works for $v \neq \infty$ too.

Proving the Parity Conjecture for a particular family

Continuing to take $g(x)=x$ and f monic.

Theorem (G., C. Maistret)

Let $f(x)=x^{3}+a x^{2}+b x+c$. Then

$$
\mu_{v}=(b,-c)_{v}\left(a b-9 c,-b \Delta_{f}\right)_{v}\left(-2, \Delta_{f}\right)_{v}
$$

$$
\begin{aligned}
\mu_{v}=(-1)^{\lambda_{v}} w_{v}\left(\operatorname{Jac} C_{f}\right) w_{v}\left(\operatorname{Jac} C_{x f}\right) & \\
& \Rightarrow(-1)^{\operatorname{rank}\left(\operatorname{Jac} C_{f}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{x f}\right)} w\left(\operatorname{Jac} C_{f}\right) w\left(\operatorname{Jac} C_{x f}\right)=+1
\end{aligned}
$$

Corollary

1 PC holds for $C_{f}: y^{2}=f(x)$ iff it holds for $C_{x f}: y^{2}=x f(x)$.
2 If E_{1}, E_{2} are elliptic curves with $E_{1}[2] \cong E_{2}[2]$, then $P C$ holds for E_{1} iff it holds for E_{2}.
$3 P C$ holds for the genus 2 hyperelliptic curve $B: y^{2}=f\left(x^{2}\right)$.

Proving the Parity Conjecture for a particular family

Continuing to take $g(x)=x$ and f monic.

Conjecture (G.)

Let c_{i}, l_{i} be the constant and lead terms of P_{i} (the ith Sturm polynomial for f). Then

$$
\mu_{v}=\prod_{i=0}^{\operatorname{deg} f-1}\left(-c_{i}, c_{i+1}\right)_{v}\left(l_{i},-l_{i+1}\right)_{v} .
$$

Next step: understanding the Sturm polynomials over \mathbb{Q}_{p}.

Thank you for listening!

